Physiological roles and properties of potassium channels in arterial smooth muscle.
نویسندگان
چکیده
This review examines the properties and roles of the four types of K+ channels that have been identified in the cell membrane of arterial smooth muscle cells. 1) Voltage-dependent K+ (KV) channels increase their activity with membrane depolarization and are important regulators of smooth muscle membrane potential in response to depolarizing stimuli. 2) Ca(2+)-activated K+ (KCa) channels respond to changes in intracellular Ca2+ to regulate membrane potential and play an important role in the control of myogenic tone in small arteries. 3) Inward rectifier K+ (KIR) channels regulate membrane potential in smooth muscle cells from several types of resistance arteries and may be responsible for external K(+)-induced dilations. 4) ATP-sensitive K+ (KATP) channels respond to changes in cellular metabolism and are targets of a variety of vasodilating stimuli. The main conclusions of this review are: 1) regulation of arterial smooth muscle membrane potential through activation or inhibition of K+ channel activity provides an important mechanism to dilate or constrict arteries; 2) KV, KCa, KIR, and KATP channels serve unique functions in the regulation of arterial smooth muscle membrane potential; and 3) K+ channels integrate a variety of vasoactive signals to dilate or constrict arteries through regulation of the membrane potential in arterial smooth muscle.
منابع مشابه
The roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta
Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...
متن کاملContribution of potassium channels, beta2-adrenergic and histamine H1 receptors in the relaxant effect of baicalein on rat tracheal smooth muscle
Objective(s): Baicalein, a compound extracted from a variety of herbs, showed various pharmacological effects. This study evaluated the relaxant effects of baicalein and its underlying molecular mechanisms of action on rat’s isolated tracheal smooth muscle.Materials and Methods: Tracheal smooth muscle were contracted by 10 μM methacholin...
متن کاملCardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention.
Potassium channels play an important role in electrical signaling of excitable cells such as neurons, cardiac myocytes, and vascular smooth muscle cells (VSMCs). In particular, the KCNQ (Kv7) family of voltage-activated K(+) channels functions to stabilize negative resting membrane potentials and thereby opposes electrical excitability. Of the five known members of the mammalian Kv7 family, Kv7...
متن کاملRegulation of arterial tone by KV1 potassium channels.
Potassium Channels To the Editor: We have read with interest the recent article published by Circulation Research entitled “Heteromultimeric Kv1 Channels Contribute to Myogenic Control of Arterial Diameter.”1 The study adds to an expanding body of evidence suggesting pivotal roles of the voltage-gated potassium channels (KV channels) in vascular smooth muscle cells as regulators of arterial ton...
متن کاملPotassium channels in pulmonary arterial hypertension.
Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder with various origins. All forms of PAH share a common pulmonary arteriopathy characterised by vasoconstriction, remodelling of the pre-capillary pulmonary vessel wall, and in situ thrombosis. Although the pathogenesis of PAH is recognised as a complex and multifactorial process, there is growing evidence that potass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 268 4 Pt 1 شماره
صفحات -
تاریخ انتشار 1995